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On the domain of variability of coefficients of
power series which do not take given values

By

C. Carathéodory in Göttingen

Translated by Nicholas J. Williams

Introduction.
p.95

If we are given an analytic function y of the complex variable z which takes the
value y = A0 for z = 0 and is regular in the neighbourhood of this point, but
is subject to certain restrictions in the interior of the circle |z| < ρ, then there
stands the question of whether or not thereby there also arise restrictions on the
coefficients of the power series

y = A0 +
∞∑
i=1

Akz
k,

that represents the function, which can be determined.
A special case of this type of question occurs in the well-known generalisation

to all transcendental functions which E. Landau has given for Picard’s Theorem.∗
Indeed, this theorem can be described in the following way: if the function y

takes the value y = A0 for z = 0, is regular in the interior of the unit disc and
leaves out the values zero and one, and if we refer to the real and imaginary part
of the coefficient A1 as coordinates of a point in the plane, then this point must
lie in the interior of a circle, whose radius can be given. p.96

∗E. Landau, Sitzungsb. d. Berl. Akad. (1904), XXXVIII (pag. 1118), see also A. Hurwitz,
Züricher Vierteljahrsschr. XLIX (pag. 242); F. Schottky, Berl. Akad. (1904) XLII (pag. 1244);
C. Carathéodory, C. R. Bd. 141 (1905), p. 1213; P. Boutroux, Bull. Soc. Math. Bd. 34 (1906),
p. 30.
During the printing of this work Mr Landau has published a detailed representation of the
question in our consideration. In particular, in §15 of this work a problem analogous to the one
we consider here is resolved for a recurring algebraic procedure.
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In a similar way, in the following I shall refer to the real and imaginary parts
of the n coefficients

A1, A2, . . . , An

as coordinates of a point in 2n-dimensional space and call this point the n-th
geometrical representative of the power series. Then it will be shown that, if
the function y satisfies prescribed conditions, similar to in the Landau–Picard
Theorem, then this point must lie in the interior or on the surface of a body K2n,
which one can determine completely and explicitly.

We shall explore the special cases where the function y is regular in the interior
of the unit disc and has a positive real part, while it takes the value y = 1 for
the point z = 0.

If we represent by Cn the curve which is traced by the points with the 2n
coordinates

2 cos θ, 2 cos 2θ, . . . , 2 cosnθ,
−2 sin θ,−2 sin 2θ, . . . ,−2 sinnθ

as θ varies from 0 to 2π, then the body Kn coincides with the smallest convex
body Kn which contains Cn.

Conversely, however, every point of Kn is also the n-th geometrical represen-
tative of at least one function y(z) which satisfies the prescribed conditions; this
function is uniquely determined, rational, and possesses at most n zeroes for the
points on the surface.∗

The general question will be resolved from this special one with the help of a
suitable conformal mapping; this mapping corresponds to a birational transfor-
mation of the n-th geometrical representative in 2n-dimensional space, and the
body Kn sought is nothing other than the transformation of the convex body Kn.

§1.
Definition of the body Kn.

We first consider functions of a complex argument z which are regular in the
interior and on the edge of the unit disc

|z| 6 1,

have a positive real part for these values of z, and for z = 0 take the value
one. A function which satisfies all these conditions, may be represented in the
neighbourhood of z = 0 by a power seriesp.97

∗This result is, in other words, a generalisation and specialisation of the well-known
Hadamard–Borel inequalities.
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(1) y = 1 +
∞∑
k=1

(ck + ick)zk

whose radius of convergence is greater than one; by f(θ) we denote the real part
of (1) on the unit disc

z = eiθ;

this quantity, which by our assumptions must satisfy the relation

(2) f(θ) > 0,

may be expanded as a convergent Fourier series

(3) f(θ) = 1 +
∞∑
k=1

(ck cos kθ − ck sin kθ);

therefore the well-known equations

(4) 1
π

∫ 2π

0
f(θ) dθ = 2,

(5)


1
π

∫ 2π

0
f(θ) cos kθ dθ = ck,

1
π

∫ 2π

0
f(θ) sin kθ dθ = −ck,

hold.
From the equations (5), and indeed for every k, the relations

|ck| 6 2, |ck| 6 2

follow by applying the Intermediate Value Theorem with the help of (4) and (2).
The n-th geometrical representative of a function which satisfies our requirements
is therefore always bounded.

The degree n polynomial

(6) y = 1 +
n∑
k=1

(ck + ick)zk

has the point with coordinates

(7)
c1, c2, . . . , cn,

c1, c2, . . . , cn
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as its n-th geometrical representative, and because the real part of the function
(6) has the value

f(θ) = 1 +
n∑
k=1

(ck cos kθ − ck sin kθ)

on the unit disc, we see that this real part cannot be negative on the whole p.98
surface of the circle if for every k we have

|ck| <
1

2n, |ck| <
1

2n.

Because in this case the function (6) satisfies all our conditions, we see that
certain neighbourhoods of the origin are consist of geometrical representatives of
our functions; one such neighbourhood is e.g. the ball of radius 1

2n

(8)
n∑
k=1

(c2
k + c2

k) 6
1

4n2 .

If y1 and y2 are two functions which satisfy all of our requirements, then the
same holds for every function y from the collectiony = ty1 + (1− t)y2,

0 6 t 6 1;

the representative P of y traces out the line segment which connects the repre-
sentatives P1 and P2 of y1 and y2, as t varies from 0 to 1; this segment therefore
consists exclusively of geometrical representatives of our functions.

Figure 1

O

T

S Q

π
R

It follows above all from this remark that for every radius vec-
tor of 2n-dimensional space which emanates from the origin, a
unique boundary point π exists, which separates those points of
this line which can be representatives of one of our functions, from
the others which do not have this property. Now let S be a point
on the ray which connects the origin O with the boundary point
π and let π lie between O and S (Fig. 1). Every point Q which
differs from S by less than

1
2n

πS

Oπ
,

cannot possibly be a representative of one of our functions. Be-
cause the line Qπ cuts through the circle of radius 1

2n , which de-
termines the 2n-dimensional ball (8) in the plane OQS (Fig. 1);

one can therefore also place a tangent QT to this circle from Q, which meets
the segment in an interior point R. If now Q were a representative of a function
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y(z) which satisfies our requirements, then the same would have to hold for every
point of the segment QT , and consequently also for R, and π would not be a
boundary point of the representatives on the segment OS.p.99

We denote by Kn the set of points that one obtains if one adds the boundary
points π to the representatives of functions satisfying our requirements; it follows
from the foregoing that every point S which is not contained in Kn is separated
from this set by a finitely determined distance; because now the collection of
points Kn contains no isolated points, we see that it is perfect.

Figure 2

P1 P2

O

P ′1 P ′2

S

S ′

If P1 and P2 are two arbitrary points of Kn, then
every point of the line segment P1P2 also belongs
to this set. Indeed, if a point S of this segment
were to lie outside Kn, then there would have to
exist a parallel segment P ′1P ′2 to P1P2 in the triangle
OP1P2 which contained at least one point S ′ that
did not belong to Kn, and this is impossible, because
P ′1 and P ′2 are certainly representatives of functions
y(z) which satisfy all of our earlier requirements.

The collection of points Kn therefore satisfies the
definition of a 2n-dimensional convex body that
Minkowski established:∗ it does not entirely lie in
a (2n − 1)-dimensional hyperplane, it is perfect, and it contains every linear
segment whose endpoints it contains.

The surface Dn of the convex body Kn is formed of the totality of the boundary
points π, of which there is one lying on every radius vector from the origin;
because one can show, and in fact in a very analogous way to earlier, for the
exterior points S, that, if P is an interior point of the segment Oπ, a certain
neighbourhood of P consists exclusively of points of Kn and consequently P is
also an interior point of Kn; in this way Dn completely determines the body Kn.

§2.
Supporting hyperplanes.

A closed set of points in n-dimensional space possesses the familiar supporting
hyperplanes,∗∗ i.e. such (n−1)-dimensional planes which contain at least one point
of the set and which divide n-dimensional space lying outside the hyperplane into
two parts, one of which does not contain a single point of the set.

From the work of Mr Minkowski it follows that, for a convex body K, there is

∗Geometrie der Zahlen (Leipzig 1896) p.200.
∗∗This expression was introduced by Minkowski loc. cit. p.13.
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at least one supporting hyperplane through every point of the surface D. I owe
the idea of the following simple proof of this fact to his friendly message.p.100

Let π be an arbitrary point of the surface D of K with coordinates

γ1, γ2, . . . , γn;

furthermore, let S be an arbitrary point which lies outside the body K, and ε be
the distance between π and S. The distance of S to an arbitrary point of K has
a non-zero minimum δ that is attained for a point π′ of the body, and we always
have

δ 6 ε.

The (n− 1)-dimensional plane which contains π′ and intersects the segment π′S
perpendicularly is a supporting hyperplane of the body K, because if a point T
of K were to lie outside this hyperplane and on the same side as S, then due to
the convexity of K, the whole segment π′T consists exclusively of points of this
body, and the minimum of the distance between S and K would not be attained
by the point π′, which follows immediately from considering the triangle Sπ′T .
Because now, consequently, π comes to lie on the opposite side as S, if it is not a
point of this hyperplane, then the segment πS certainly contains a point of the
supporting hyperplane constructed and this is at a distance of less than ε from
π. We now consider a series of points

(9) S1, S2, S3, . . . ,

which all lie outside the body K and converge to π and let

(10) u
(k)
1 c1 + u

(k)
2 c2 + · · ·+ u(k)

n cn − d = 0

be the equation of the supporting hyperplane constructed using the point Sk in
the way depicted above. If the equation (10) is written in normal form, i.e. if
the coefficients u(k)

i satisfy the condition

(11)
n∑
i=1

(u(k)
i )2 = 1,

then the left side of (10) represents the distance of the point with coordinates
c1, c2, . . . from the said hyperplane. Therefore if we denote by εk the distance
between Sk and the boundary point π, whose coordinates were γi, then we have
by the foregoing

u
(k)
1 γ1 + u

(k)
2 γ2 + · · ·+ u(k)

n γn − d < εk;
and so the equation (10) may be written

(12) u
(k)
1 (γ1 − c1) + u

(k)
2 (γ2 − c2) + · · ·+ u(k)

n (γn − cn)− hk = 0
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in which
hk < εk

and consequently the equation p.101

(13) lim
k→∞

hk = 0

holds. Because, due to (11), all quantities u(k)
i are now bounded, we may select a

new series from the points S1, S2, . . . , for which the quantity limk→∞ u
(k)
i exists,

so that one can write the equation

lim
k→∞

u
(k)
i = ui

for every
i = 1, 2, . . . , n.

I claim that the hyperplane

(14) u1(γ1 − c1) + u2(γ2 − c2) + · · ·+ un(γn − cn) = 0,

which contains the point π, is a supporting hyperplane. Indeed, in the opposite
case there would exist two points P and P ′ of K whose coordinates would give
opposite signs when inserted into the left side of (14). However, the same would
then apply for an appropriate choice of k in (12), which would not be recon-
cilable with the fact that for every k the equation (12) represents a supporting
hyperplane, and hereby the theorem of Minkowski is proven.

§3.
Determination of the surface.

We now return to the convex body Kn in 2n-dimensional space, which we con-
sidered in the first section. Every interior point of Kn is the n-th geometrical
representative of a function y(z), whose radius of convergence is larger than one,
whose real part is non-negative in the unit disc, and which takes the value one
for z = 0. If now, conversely,

(15) y = 1 +
∞∑
k=1

(ck + ick)zk

is a function whose radius of convergence is greater than or equal to one and
whose real part is non-negative in the unit disc, then for all

r < 1
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the point with coordinates
c1r, c2r

2, . . . , cnr
n,

c1r, c2r
2, . . . , cnr

n

lies in the interior of the body Kn and consequently the point with coordinates

c1, c2, . . . , cn; c1, c2, . . . , cn

in the interior or on the surface of this perfect set of points; the n-th geometricalp.102
representative of (15) is therefore a point of Kn in every case.

Let π now be a point of the surface of Kn with coordinates

γ1, γ2, . . . , γn; γ1, γ2, . . . , γn

and

(16)
u1(c1 − γ1) + u2(c2 − γ2) + · · ·+ un(cn − γn)

+u1(c1 − γ1) + u2(c2 − γ2) + · · ·+ un(cn − γn)

 = 0

the equation of a supporting hyperplane through this point. We normalise the
coefficients of (16) so that

n∑
k=1

(u2
k + u2

k) = 1

and
n∑
k=1

(ukγk + ukγk) > 0.

For every point of Kn with coordinates ck, ck, the left side of (16) is negative or
zero, therefore

(17)
n∑
k=1

(ukck + ukck) 6
n∑
k=1

(ukγk + ukγk),

and for interior points the possibility of equality is ruled out. Because π is now
an accumulation point of interior points, then one can determine the quantity

n∑
k=1

(ukγk + ukγk)

as the upper limit of
n∑
k=1

(ukck + ukck),
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where the point with coordinates (ck, ck) runs through the interior of the body
Kn; now, however, every such point is the n-th geometrical representative of a
function y(z) which is regular on the unit disc and satsifies our requirements.
We can therefore write

(18)
n∑
k=1

(ukck + ukck) = 1
π

∫ 2π

0
f(θ)Φ(θ) dθ

by introducing the notation

(19) Φ(θ) =
n∑
k=1

(uk cos kθ − uk sin kθ),

with help from (5). p.103
Because now the relations (2) and (4), i.e.

f(θ) > 0,
1
π

∫ 2π

0
f(θ) dθ = 2,

also hold here, the relation

(20)
n∑
k=1

(ukck + ukck) 6 2M

follows from (18), if we denote the maximum of the function Φ(θ) on the interval
from 0 to 2π by M ; the upper limit of the left side of (20) is therefore

(21)
n∑
k=1

(ukγk + ukγk) 6 2M.

The function Φ(θ) is continuous on the interval from 0 to 2π and attains its
maximum M for at least one particular value of θ, e.g. for θ = θ1, so that

(22) M =
n∑
k=1

(uk cos kθ1 − uk sin kθ1).

On the other hand, the function

y = eiθ1 + z

eiθ1 − z
is regular in the interior of the unit disc, its real part is positive inside this region
and it takes the value 1 for z = 0. The n-th geometrical representative of this
function is therefore a point of Kn; it has coordinates

ck = 2 cos kθ1, ck = −2 sin kθ1,
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and it follows from (22) that for this point
n∑
k=1

(ukck + ukck) = 2M.

Therefore, due to (17)
2M 6

n∑
k=1

(ukγk + ukγk)

and then the equality with (21) delivers

(23)
n∑
k=1

(ukγk + ukγk) = 2M.

p.104
Let

P1, P2, P3, . . .

now be a series of infinitely many points in the interior of Kn, which converges
to our point π, and let

c
(m)
1 , c

(m)
2 , . . . , c(m)

n ; c
(m)
1 , c

(m)
2 , . . . , c(m)

n

be the coordinates of the point Pm; due to (17) and (23), we can write

(24)
n∑
k=1

(ukc(m)
k + ukc

(m)
k ) = 2M − ε2m,

where εm denotes a non-zero quantity and

lim
m→∞ εm = 0.

Furthermore, let ym be a power series which is convergent on the unit disc, which
satisfies all of our requirements and whose geometrical representative is Pm, and
fm(θ) be the real part of ym on this disc.

By (18) and (24) the equation

(25) 1
π

∫ 2π

0
fm(θ)Φ(θ) dθ = 2M − ε2m

holds. Now denote by
θ1, θ2, . . . , θp

all the values of θ between 0 and 2π for which

Φ(θ) =
n∑
k=1

(uk cos kθ − uk sin kθ)
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attains its maximal value M ; because these quantities consist of an interrupted
Fourier series which finishes with the terms in cosnθ and sinnθ, they can never
exhibit more than n maxima in the interval from 0 to 2π, which is also true of
the values of the constants uk, uk, and so we have

p 6 n.

For sufficiently small values of εm, or, what amounts to the same, for suffi-
ciently large values of m, the requirement that

Φ(θ) >Mεm

defines exactly p distinct disjoint sub-intervals∗ in the interval from 0 to 2π

δ
(m)
1 , δ

(m)
2 , . . . , δ(m)

p ;

all of these subintervals converge to zero as m tends to infinity. We denote by p.105
L

(m)
0 the value of

1
2π

∫
fm(θ) dθ

on the complement of all the subintervals, by L(m)
j the value of the same integral

for the interval δ(m)
j . Due to (4), for every m

(26) L
(m)
0 + L

(m)
1 + · · ·+ L(m)

p = 1;

on the other hand, we have

1
π

∫ 2π

0
fm(θ)Φ(θ) dθ 6 2L(m)

0 (M − εm) + 2M(L(m)
1 + L

(m)
2 + · · ·+ L(m)

p ).

From (25) and (26) it therefore follows that

2M − ε2m 6 2M − 2L(m)
0 εm

or
L

(m)
0 6

εm
2 ;

consequently, we also have that

(27) lim
m→∞L

(m)
0 = 0.

∗or at most p+ 1, of which two however contain 0 and 2π.
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From the set of functions ym one can now isolate a subset such that for every

j = 1, 2, . . . , p

the L(m)
j converge to particular boundary values; we then have that

lim
m→∞L

(m)
j λj

and, due to (26) and (27),
p∑
j=1

λj = 1;

the λj can, by definition, never be negative, due to the requirement that

fm(θ) > 0.

We can actually determine the coordinates

γ1, γ2, . . . , γn; γ1, γ2, . . . , γn

of our boundary point π using the results we have found, because

γk = lim
m→∞ c

(m)
k , γk = lim

m→∞ c
(m)
k ;

p.106

c
(m)
k = 1

π

∫ 2π

0
fm(θ) cos kθ dθ,

c
(m)
k = −1

π

∫ 2π

0
fm(θ) sin kθ dθ

and, if we allow the intervals δ(m)
1 , δ

(m)
2 , . . . , δ(m)

p to become infinitesimally small
as m increases, the middle statement gives

γk = 2
p∑
j=1

λj cos kθj,

γk = −2
p∑
j=1

λj sin kθj.

If we now remark that p is at most equal to n, then we see that every point
π of the surface of Dn of Kn has coordinates

(28)


γk = 2

n∑
j=1

λj cos kθj,

γk = −2
n∑
j=1

λj sin kθj,
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where θj, λj denote appropriate constants which satisfy the conditions

(29)


0 6 θj 6 2π, λj > 0 j = 1, 2, . . . , n

n∑
j=1

λj = 1.

If, conversely, θj and λj are 2n arbitrary real numbers which meet the condi-
tions (29), then the equations (28) represent the coordinates of a point P of Kn,
because P is the n-th geometrical representative of the function

(30) y =
n∑
j=1

λj
eiθj + z

eiθj − z
,

and this satisfies all of our conditions: it is regular and its real part is positive
for

|z| < 1,

and for z = 0 we have y = 1. p.107
Therefore, if one allows the values

θ1, θ2, . . . , θn,

λ1, λ2, . . . , λn

vary unconstrained within the limits of (29), then the point whose coordinates
are given by the equations

(31)


γk = 2

n∑
j=1

λj cos kθj,

γk = −2
n∑
j=1

λj sin kθj

never leaves the convex body Kn and every point of the surface Dn of this body is
attained by at least one system of values θj, λj.

§4.
Uniqueness.

It must now be shown that the rational functions of the form (30) are the only
ones which satisfy all our conditions and have a point π of the surface Dn of Kn as
a geometrical representative. We assume that y(z) is a function which achieves
this; then the function y = y(rz) is also regular on the unit disc for every r < 1
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and we can introduce the notation f(r, θ) for the real part of this last function
on the unit disc. We shall immediately make use of the observation that f(r, θ)
also represents the real part of the original function y(z) on the circle reiθ.

Because the representative of y(rz) lies in the interior of Kn, we have the
analogous equation to equation (25),

1
π

∫ 2π

0
f(r, θ)Φ(θ) dθ = M − ε2(r),

where ε(r) is a non-zero positive value and, because the n-th geometrical repre-
sentative of y(rz) changes continuously with r,

lim
r=1

ε(r) = 0.

We again consider the intervals

δ1(r), δ2(r), . . . , δp(r),

inside which
Φ(θ) >M − ε(r),

and denote by Lj(r) the value of the integralp.108 ∫
f(r, θ) dθ

on the interval δj(r). One can always specify a series of increasing positive
quantities

(32) r1, r2, r3, . . .

which are all < 1, converge to one and have the property that for every

j = 1, 2, . . . , p,

the limit
lim
n=∞Lj(rn) = λj

exists.
We now consider the function

y(z) =
p∑
j=1

λj
eiθj + z

eiθj − z

where the λj are given by the values specified and the θj have the same meaning
as earlier; the quantities λj, θj satisfy the relation (29) by construction, so that
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y(z) satisfy all our conditions. We denote the real part of y(z) on the disc reiθ
by f(r, θ).

If
z = ρeiψ

is now an arbitrary point in the interior of the disc |z| < 1, then in the series (32)
all rn > ρ for sufficiently large n, and f(ρ, ψ) can be expressed by the Poisson
integral for a disc with radius rn

f(ρ, ψ) = 1
2π

∫ 2π

0

f(rn, θ)(r2
n − ρ2)

r2
n − 2rnρ cos(θ − ψ) + ρ2 dθ.

But now the left hand side of this equation is independent of n and we obtain

f(ρ, ψ) =
p∑
j=1

λj(1− ρ2)
1− 2ρ cos(θj − ψ) + ρ2 ,

if we let n tend to infinity and approximate the integral similarly to earlier. We
would obtain exactly the same expression from the calculation of f(ρ, ψ), so that
consequently the equation

f(ρ, ψ) = f(ρ, ψ)

must be an identity in ρ and ψ; from here it finally follows, because p.109

y(0) = y(0) = 1,

that
y(z) =

p∑
j=1

λj
eiθj + z

eiθj − z
,

i.e. the relation that we wanted to prove.
At the same time we are given that the points of the surface Dn may be

represented in a unique way by the formula (28); indeed, for each way in which
the quantities (λj, θj) and (λ′j, θ′j) may be substituted into the formulas, the same
values for γk, γk are given, and, by the foregoing, the equation

n∑
j=1

λj
eiθj+z

eiθj − z
=

n∑
j=1

λ′j
eiθj+z

eiθj − z

must be satisfied by z, from which it follows that the λj, θj and λ′j, θ′j are identical
up to ordering.

We therefore have the theorem: There is only one function whose represen-
tative is a given point of the surface Dn of Kn, and this is rational and of degree
at most n.



16 C. Carathéodory.

§5.
Completeness of the representation.

In order to also prove the converse of this theorem, i.e. that the representative of
every rational function which can be represented in the form (30) belongs to the
surface Dn, we must consider the geometrical properties of Kn somewhat more
closely.

We first remark that every point of the surface or of the interior of the convex
body Kn can be viewed as the projection to 2n-dimensional space of a point of
the surface Dn+1 (which lies in (2n+ 2)-dimensional space). From here it follows
that the coordinates of every point of Kn can be represented in the form

(33)



ck = 2
(n+1)∑
j=1

λj cos kθj,

ck = −2
(n+1)∑
j=1

λj sin kθj,

k = 1, 2, . . . , n,

where the λj are all either positive or zero and their sum is equal to one.p.110
We denote by Cn the curve which is described by the points with coordinates

2 cos θ, 2 cos 2θ, . . . , 2 cosnθ,
−2 sin θ,−2 sin 2θ, . . . ,−2 sinnθ

in 2n-dimensional space, if θ varies from 0 to 2π. The points of this curve all
belong to Kn as representatives of the functions

y(z) = eiθ + z

eiθ − z
.

If
C1, C2, . . . , Cp

are the points of Cn which correspond to the values

θ1, θ2, . . . , θp

of θ which occur in (33), (where it is assumed that

p 6 n+ 1

and
λp+1 = λp+2 = · · · = λn+1 = 0),
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then the point with coordinates (33) also belongs to every convex body to which
the points C1, C2, . . . , Cp belong; this can be proven without anything further
with the help of our definition of a convex body and the application of the
conclusion for n to (n+ 1).

From all these facts it follows that every point of Kn is contained in every
convex body which contains the curve Cn, that is, that Kn is the smallest convex
body which contains Cn.

Every supporting hyperplane of Cn is therefore a supporting hyperplane of Kn,
else the part K′n of Kn which lay on the same side of the supporting hyperplanes
as Cn would already form a convex body which contained Cn and which was
smaller than Kn. Similarly, we see that every supporting hyperplane of Kn must
also be a supporting hyperplane of Cn.

Now let P be a point with coordinates given as

(34)


γk = 2

p∑
j=1

λj cos kθj, γk = −2
p∑
j=1

λj sin kθj

k = 1, 2, . . . , n
p 6 n,

where the λj are always positive and have one as their sum.
I shall show that this point is a point of the surface Dn of Kn; this can be

proven by constructing a supporting hyperplane of Kn, or, equivalently, of Cn,
which contains the point P . p.111

For this purpose we consider a series of n distinct points of Cn, which encom-
pass the points corresponding to the values

θ1, θ2, . . . , θp

in (34).
Every (2n − 1)-dimensional hyperplane which contains these n points must

go through P . Now, however, there is one such hyperplane with the equation

(35)
n∑
k=1

(ukck + ukck) = 2d,

which touches the curve Cn at each of the n points; one only needs the 2n linear
equations 

n∑
k=1

(uk cos kθj − uk sin kθj) = d,

n∑
k=1

(kuk sin kθj + kuk cos kθj) = 0,

j = 1, 2, . . . , n
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to determine the ratios of the 2n+ 1 values uk, uk and d.
The expression

(36)
n∑
k=1

(uk cos kθ − uk sin kθ) = d

has at most 2n real roots, as θ varies from 0 to 2π; it can therefore only vanish
in this interval for the values

θ1, θ2, . . . , θn,

because each of these values corresponds to a double root. It has the same sign
in the neighbourhood of each of these values. In other words, (35) represents the
desired supporting hyperplane of Cn which contains the point P .

From here it now follows that the equations (28) consequently can represent
points of the surface Dn, and because we proved the uniqueness of the repre-
sentation for these points in §4, it follows in complete generality that equations
such as

n∑
j=1

(λj cos kθj − µj cos kψj) = 0,

n∑
j=1

(λj sin kθj − µj sin kψj) = 0,

k = 1, 2, . . . , n

with the additional conditionsp.112 

0 6 θj < 2π, 0 6 ψj < 2π,
λj > 0, µj > 0,

n∑
j=1

λj = 1,
n∑
j=1

µj = 1

can only hold if, with a suitable ordering of µj, ψj,λj = µj, θj = ψj

j = 1, 2, . . . , n.

Therefore, if one varies the θj, λj in the formula (28) subject to the condi-
tions (29), then the surface Dn is described as the region of variability of the
coefficients, and the relation between the points of this surface and the system of
values for the λj, θj is a bijective one.



Domain of variability of coefficients of power series. 19

Every point of the region of variability Kn is further attained if we replace the
condition

n∑
j=1

λj = 1

by the other
n∑
j=1

λj 6 1.

We therefore have the following theorem:
Every point P of the region of variability Kn is the n-th geometrical represen-

tative of one and only one rational function of the form

(37)



y = λ0 +
n∑
j=1

λj
eiθj + z

eiθj − z
,

λj > 0, j = 0, 1, 2, . . . , n
n∑
j=0

λj = 1;

for λ0 = 0 the point P lies on the surface Dn of Kn and the functions (37) are
the unique ones whose representative lies on Dn.

§6.
General problems.

p.113
We now want to apply the results discovered to general problems and assume
that T is a region of a hyperplane of a complex variable u, or also a Riemann
surface which lies in this hyperplane, and we can map the halfplane

R(y) > 0

to this region with the help of an analytic function φ(y); thereby the point y = 1
transforms into a regular point

u = M0 = m0 + im0

of the interior of T . The function φ(y) can be expanded into a convergent power
series of the form

(38) u = M0 +
∞∑
k=1

Mk(y − 1)k
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in the neighbourhood of the point y = 1, where

|M1| 6= 0;

one can therefore invert the series (38) in the neighbourhood of u = M0 and e.g.
write

(39) y − 1 =
∞∑
k=1

Nk(u−M0)k

or
y = ψ(u).

Now let u(z) be an analytic function of the complex variable z which for all
values

|z| < 1

remains bounded in the interior of the region T , is regular in this region, and
takes the value u = M0 for z = 0; by the assumptions made this function can be
expanded into the convergent power series

(40) u = M0 +
∞∑
k=1

Akz
k

in the neighbourhood of z = 0, and we want to investigate the region of variability
of the n-th geometrical representative of this power series.

If we substitute into (39) a given function u(z) for u, then y becomes a function
of z which satisfies all the requirements described at the beginning of this work.p.114
We can therefore expand it into the convergent power series

(41) y = 1 +
∞∑
k=1

Ckz
k

and the n-th geometrical representative of this power series will lie in the interior
or on the surface of our earlier body Kn.

The equations (38) and (39), joined with (40) and (41), now give

∞∑
k=1

Akz
k =

∞∑
j=1

Mj

∞∑
l=1

Clz
l

j ,
∞∑
k=1

Ckz
k =

∞∑
j=1

Nj

∞∑
l=1

Alz
l

j ,
and we can, with the help of these last relations, if one compares the same powers
of z on the right hand side and the left hand side, also express Ak as a completely
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rational function of C1, C2, . . . , Ck, as well as express Ck as a completely rational
function of A1, A2, . . . , Ak.

The n-th geometrical representatives of the power series (40) and (41) there-
fore correspond to each other in a bijective way and the birational transforma-
tion of 2n-dimensional space which realises this map only depends on all real and
imaginary parts of the first n coefficients M1,M2, . . . ,Mn of the power series (38).
We now obtain the domain of variability Kn of the n coefficients A1, A2, . . . , An by
applying the transformation to our earlier body Kn and consequently the surface
Ωn of Kn contains the representatives of functions of the form

(42) φ

(
α0+α1z+· · ·+αnzn
β0+β1z+· · ·+βnzn

)
,

where φ(y) again denotes a function which maps the half plane to the region T ,
and α, β denote constants.

All our earlier theorems may be transferred to the body Kn in a suitably
modified form. In particular the coordinates of the surface Ωn of Kn may be
expressed as rational functions of the parameters


λj, cos kθj, sin kθj,

j = 1, 2, . . . , n
k = 1, 2, . . . , n

used earlier. Thereby, by the fact that the transformation is birational, we ensure p.115
that two points of Ωn which correspond to different values of the parameters can
never coincide, and that consequently the surface Ωn does not intersect itself and
the body Kn is simply connected.

As I suggested in my Comptes Rendus Note (26 December 1905), one can
also extend the theory further to such cases in which the point u = M0 of the
region T is singular, but the function u(r) remains solely in T ; then the function
u(z) in fact possesses a singularity at z = 0, but the power series (41) is never-
theless regular at this point and this suffices to establish the body Kn here as well.

Brussels, 14th September 1906.


